
Spectral properties of Schrodinger operators with matrix potentials. II

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 2573

(http://iopscience.iop.org/0305-4470/19/13/022)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) 2573-2581. Printed in Great Britain 

Spectral properties of Schrodinger operators with matrix 
potentials: I1 

Petr Seba 
Nuclear Centre, Faculty of Mathematics and Physics, Charles University, V HoleSoviEkach 
2, Prague 8, Czechoslovakia 

Received 15 July 1985, in final form 9 December 1985 

Abstract. We describe the discrete and continuous spectrum of Schrodinger operators with 
matrix potentials in the one- and three-dimensional configuration space. 

1. Introduction 

Schrodinger operators with matrix potentials V (  x) = { vl,( x)} are often used in various 
parts of quantum physics, e.g. the quark-antiquark interaction in the non-relativistic 
limit (Beavis 1979) or the nucleon-nucleon interaction (Landau and Lifshitz 1974, 
Reid 1968), etc. It is therefore important to know as much as possible about their 
spectra. But, unlike the scalar case, very little is known about the spectra of such 
operators. 

The aim of this paper is to give a quick orientation about the character of u ( H )  
for a Schrodinger operator H with a given matrix potential in the one- and three- 
dimensional configuration space. This represents a continuation of our previous work 
(Seba 1984) where self-adjointness of such operators was investigated. 

We describe the continuous spectrum in 0 2 .  Section 3 discusses the discrete 
spectrum in the case of small coupling. 

2. The continuous spectrum 

2.1. The three-dimensional case 

Consider the Hilbert space X =  L 2 ( R 3 ) 0  C" of vector functions 

U = (q,. . . , U") ui E L2( R3) i =  1 , 2 , .  . . , n 

with the scalar product 
n 

(U, v)n(x> = 1 u i ( x ) v i o  
i = l  

(U, U) = (U, V ) " ( X >  d3X 

and the Schrodinger operator H defined by 

H = - A +  V ( X )  
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2514 P Seba 

where V ( x )  is a real symmetric matrix with elements V,,(x) .  We assume that the 
functions y j (x)  are locally square integrable and that 

lim K j ( x )  = Yj (w)  
lxl-+m 

does exist and is finite for all i, j = 1,2 , .  . . , n. 
For the essential spectrum of H, theorem 1 holds (see below). 

Theorem 1. 

C7,,,(H) = [CL, a) 
where 

p =min(A,, A 2 , .  . . , A , )  

and A I , .  . . , A, are eigenvalues of the constant matrix V ( w )  = { K j ( a ) } .  
Proof: We use the method of Dirichlet decoupling. Denote by HD the operator 
- A +  V ( x )  with the Dirichlet boundary condition at the surface of the sphere 1x1 = R. 
Then HD is a self-adjoint operator in X which decouples the regions 1x1 < R and 
IxI> R. We have 

where HD,in is the operator - A +  V defined on L 2 ( B R ) @  C" by the Dirichlet boundary 
condition at 1x1 = R ( B R  = { x  E R 3 ;  1x1 4 R } ) ,  and HD,o,, is the same operator defined 
on L'(R'\BR)OC" by the Dirichlet boundary condition at 1x1 = R. 

HD,in is an operator with compact resolvent and its essential spectrum is empty. 
Therefore 

HD = HD,in@ HD,out 

Oess(HD) = (Tess(HD,out)* 

Using the same method as described in Pearson (1984), we get for Im z # 0 that 
( H - z)-' - ( H ~ -  z)-' 

is compact (cf also Povzner 1953, Birman 1962). Weyl's theorem tells us that 

and we have finally 
aess(H) = C7ess(HD) 

= aess(HD,out) 

for all R > 0. 

diagonalises V(a0): 

if applied to HD,out yields 

where W ( x )  = U V ( x )  U-' is an almost diagonal matrix for R large. Choosing R 
sufficiently large we can make the non-diagonal elements of W small enough while 
the diagonal elements fulfil 

cess(HD,out)  can easily be obtained. The constant unitary matrix U which 

UV(c0) U-' = diag(A,, A 2 , .  . . , A,) 

UHD,,,, U-' = -A + W (  X )  

lim W i i ( x )  = A i  i = l , 2  , . . . ,  n. 
/+m 

Therefore we have 

aes5(H) = [CL, 00). 



Spectral properties of Schrodinger operators: I I  2575 

Remark 1. If liml,i,.. V,,(x) exists but is not finite for some i, j, we cannot obtain the 
lower boundary of cress(H) using the eigenvalues of the matrix V ( a ) .  In this case we 
have to use a somewhat different method. We denote A , ( x ) ,  i = 1,2,  . . . , n as the 
eigenvalues of the matrix V ( x )  and we assume that 

lim A, (x )=AT 
1b-m 

exists for all i. Then 

aess(H) = [ P ,  a) 

where 

p =min(AY, A T , .  . . , A:). 

We note that some of the numbers A T  can be infinite. If we have for instance A T  = a 
for all i = 1,2,  . . . , n, then cess( H )  is empty and H is an operator with compact resolvent 
(cf Seba 1984). 

2.2. The one-dimensional case 

We now have aC= L 2 ( R ) O C n  and 

d2 
H = --+ V (  XI. dx2 

We assume that the limits 

lim Vy(x) = V , , ( a )  

lim V, , (x )  = v,( -CO) 

x - x  

*+-X 

exist and are finite for all i, j = 1, 2 , .  . . , n. 

we get the following. 
Matrices V(m) and V ( - E )  must not commute in the general case. Nevertheless 

Theorem 2. 

mers(H) = [CL, a) 

where 

p =min(A:, A ? ,  . . . , A:, A;, A;, . . . , A;) 

and A:, i = 1 , 2 , ,  . . , n are eigenvalues of V(*a; ) .  

Proof: The proof is similar to that of theorem 1. Let HD be the self-adjoint operator 
given by the differential expression 

d2 
d x 2  

--+ V ( x )  

and by the Dirichlet boundary conditions at the points x = iR. Then 

H D =  H 1 0 H 2 0 H 3  
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where HI, H 2 ,  H3 are defined on L'(-co, - R ) @ C " ,  L'(-R,R)@C", L2(R,cO)@C" 
by -d2/dx2+ V(x) and by the Dirichlet conditions at the boundary points. H2 is an 
operator with compact resolvent and this implies 

c e s s ( H D )  = Cess(H1) U u e s s ( H 3 ) .  

( H  - Z ) - l -  ( H D -  z)-l  

c + e s s ( H )  = c e s s ( H D )  

Moreover 

is an operator of finite rank for Im z # 0. Weyl's theorem gives 

and therefore 

u e s s ( H )  = u e s s ( H 1 )  U ~ e s s ( H 3 ) .  

Using the same arguments as in the proof of theorem 1 we get 
uess(H1) = min(A;, A;, . . . , A;) 

r e s s ( H 3 )  = min(A:, A:, . . . , A:). 

If limx++m v,(x) exists but is not finite for some i ,j ,  we can describe u e s s ( H )  by the 
method indicated in remark 1. 

3. The discrete spectrum 

We investigate the one-dimensional case first. It is a well known fact that a one- 
dimensional scalar attractive potential binds at least one bound state, no matter how 
small the coupling is. We show that this remains true also for matrix potentials. 

In the following we restrict ourselves to matrices V(x) with elements 

Vj(x) E C?(R) i , j = l , 2  , . . . ,  n. 
(This restriction is not essential but makes the computations simpler.) 

negative eigenvalues of the operator H A :  
We know from § 2 that u e s s ( H )  = [ O , ~ O )  in this case and we will further investigate 

for small coupling constant A. 
We define the corresponding Birman-Schwinger operator K,  through its kernel 

where 

V b )  = W ) I  V W I  

V1/2(X) = V(X)l VI' /2(X) 

v1'2(x)( Vy2(x)  = V(x). 

is the polar decomposition of the potential V(x) and 

so that 

Following Simon (1976) we investigate the operator K, further because there is a close 
connection between negative eigenvalues of HA and eigenvalues of K,. 
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Lemma 1 .  E ,  < 0 is an eigenvalue of HA if and only if -1 is an eigenvalue of AK, 
with a 2 =  -EA. 

Prooj For the resolvent (HA + a’)-’, 

(HA + a 2 ) - ’  = Ro(a)-ARo(a)V’”(l  +A(V1’’2Ro(a) V”2)-11V11’2RO(a) 

where 

is an integral operator with kernel 

We see that (HA +a2) - ’  has a pole at a = a. if and only if - 1  is an eigenvalue of AK,,. 

This lemma makes it possible to determine, for a given A, the eigenvalues of HA with 
the help of those of K,. Namely, if v ( a )  is an eigenvalue of K ,  then any solution 

> 0 of 

A v ( c Y ) =  -1  (1) 

corresponds to the eigenvalue 

E, = -a: 

of HA. 
In order to investigate the spectrum of K ,  we decompose this operator as follows: 

K ,  = L, + M ,  

where L, and M ,  are Hilbert-Schmidt operators with kernels 

L,(x ,  y )  = (1/2a)lV1”2(x)V’’2(y) 

M,(x, y )  = ( 1 / 2 a ) l ~ ( ” ~ ( x ) [ e x p ( - a / x  - y l ) -  I ] v ’ / ~ ( ~ ) .  

I I A M a I I  < 1 

( 1  +AM,)-’ 

Moreover M ,  is analytic for a near 0 and we have 

for a near 0 and A small enough. Using the fact that 

exists and is bounded for these CY and A we get 

(1 +Mu)-’  = [ l  +A(l+AM,)-’L,]-’(l+hM,)-’. 

Thus - 1  is an eigenvalue of AK, if and only if - 1  is an eigenvalue of the finite rank 
operator 

A ( 1 + AM, ) - I  L, . 
We denote the eigenvalues and eigenvectors of (1 + AM,)-’L, as &(A,  CY) and xn(A, a ) :  

(l+AMu)-’LmXn = t n ~ n -  (2) 
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Inserting 

,y,(A, a, x )  = ( 1 / 2 a ) ( l + A M a ) - ’ I V 1 1 / 2 ( ~ ) b ,  

where b, E C” is a constant vector, we get from (2) 

z b n  = Snbn 

where 2 is the constant matrix 

Z = (1 /2a )  1, V’”(x)[( 1 + AM,)-’l V1’’2](x) dx. 

Decomposing 2 we get for small A 

Z =  (1 /2a )A  - (A/2a)B(a)+O(A2) 

where 

A =  J‘. V(x) dx A,  = V,(x) d x  

and 

B ( a )  = V1’2(x)(M,IV/1/2)(x) dx. J1, 
Denote by p, and a, the eigenvalues and eigenvectors of the matrix A:  

Aa, = pial 

and suppose for simplicity that all the eigenvalues p, are non-degenerate. The standard 
perturbation theory can now be applied and we have for [,(A, a )  

& ( A ,  a ) = ( 1 / 2 a ) w I  - ( A / 2 a ) ( a I ,  B ( a ) a , ) , + O ( A 2 ) .  

Decomposing further B( a ) :  

E (  a )  = Bo + B1 a + B2a2  + , . . 
we find for the solution of (1) 

where 

B o = - $ j  / V(x))x-y]V(y)dxdy.  
R R  

We note that only positive aA corresponds to an eigenvalue of HA, while negative aA 
corresponds to a resonance of HA (Baumgartel et a1 1978, Lakaev 1980). 

We see from (3) that to any negative eigenvalue pi < O  of A there is exactly one 
eigenvalue EA of HA for which 

C C  

Let us now examine what happens if 0 is an eigenvalue of A. (We suppose again that 
0 is a simple eigenvalue.) Let 

Aa, = 0 
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for some a. # 0. Then 

The first term clearly vanishes. For the second one we find, with the help of the fact 
that for the Fourier transform of (1/2a) exp( -a 1x1) 

9E(1/2a) exP(-~lxl) l (P)  = l / W +  a') 

that 

lim C (1/2a) exp(-aIx-yI) V,,(X) Vkj(Y)(ao)im dx dy 
U-'o+ i,j,k R R 

= lim 2 J l / ( p z +  a z ) s (  v k ) ( p ) g (  vkj)(p)(aO)im dp 
"-'O+i,j,k R 

(1/p2)(ao, 9(V)2(p)ao)n dp 2 0  
= 5. 

where (9V) (  p) is the matrix with elements 

( ~ V ) , ( P )  = 9( Yj)(P)* 

The non-positivity of (ao, Boao). implies that there is also, for (ao, Boao), ZO, an 
eigenvalue of HA which corresponds to the eigenvalue 0 of A. 

Summarising all the above results, we get the following. 

Theorem 3. Let HA = -d2/dx2+ A V(x) be a one-dimensional Schrodinger operator 
with a matrix potential V(x) 

V(X) = { Vj(x)} Vij(x) E C y ( R )  i , j = 1 , 2  ,..., n. 

Using the potential V(x) we introduce two constant matrices A and B, defined by 

A = {A,} A,= J v j (x )dx  
R 

Let A have k non-positive eigenvalues p l ,  p2 ,  . . . , p k  with multiplicities n,, n2, . . . , nk. 
Then the operator HA has, for A > 0 and small enough, precisely n1 + n 2 + .  . . + nk 
negative eigenvalues (counting multiplicity) and 

(-E{,,( A))"' = -( A/2)pi - ( A2/4) VU + O(A 3, i =  1,2 , .  . . , k j = 1 , 2 ,  . . . , ? l i  
where vu are the eigenvalues of the matrix PiBPi and Pi are eigenprojectors correspond- 
ing to pi .  
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Remark 2. 

weaker condition: 
(i) The theorem remains valid also for matrices V with elements V, fulfilling a 

( 1 + ~ x ~ 2 ) ~ ~ j ~ ( x )  d x < a *  

The proof does not change in this case. But it seems that the theorem remains valid 
also if 

(cf Klaus 1977). For 

(1 + lxl)l vjl(x) dx = 00 

infinitely many eigenvalues occur. The ground-state behaviour in the scalar case is 
investigated in Blankenbecler et a1 (1977). 

(ii) The min-max principle (Reed and Simon 1978) implies that the number of 
negative eigenvalues of HA is monotone, increasing in A. Therefore the number N (  V) 
of negative eigenvalues of 

d2 
dx2 

H = --+ V(x) 

satisfies 

n, + n 2 + .  . .+ nk N (  v) .  
On the other hand if Amin(x) is the smallest eigenvalue of V(x), then 

and we have 

N (  V) n N ( A m i n )  

where N(Amin) is the number of negative eigenvalues of the operator 

on L’(R). 

By using the simplest one we get 
There are various estimates for the number N(Amin) (Lakaev 1980, Newton 1983). 

where [cl 

Example. 

denotes the integer part of c. 

In order to illustrate theorem 3 let us consider the operator HA with 



Spectral properties of Schrodinger operators: IZ 2581 

Then 

-2 2 / a  
A = ( 2 b  -1)  

and theorem 3 tells us that HA has exactly one negative eigenvalue, for A > 0 and small, 
if a < 3, and exactly two eigenvalues if a > fi. 

Let us now briefly discuss the three-dimensional case. For the Birman-Schwinger 
kernel we get 

The operator K Q  is analytic for a near 0 and we have 

IIhKQII <’ 
for A small enough. Using lemma 1 we find that HA has no eigenvalues for small A. 
This corresponds to the well known fact that in the scalar case a one-dimensional 
attractive potential binds a single bound state no matter how small the coupling, while 
a three-dimensional potential that is too shallow has no bound states. 

Using the same method as in remark 2 we get a simple upper bound for the number 
of negative eigenvalues of HA in three dimensions, but we will not do it here. 
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